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FLOW OF A VISCOUS LIQUID IN A LAYER ON A ROTATING PLANE 

O. M. Lavrent'eva UDC 532 

In carrying out certain modern industrial processes, the application of thin films of 
uniform thickness onto a flat surface is required. One of the methods used to accomplish 
this consists in first pouring a sufficiently thick layer of the liquid onto the surface, 
which then thins out as the specimen is rotated [i]. Similar methods are used in making 
mirrors [2], color television screens [3], integral schemes, and magnetic memory disks [i]. 
Rotating disks are also used for spraying and for mixing liquids to accelerate heterogene- 
ous chemical reactions in various processes of chemical technology [4-6]. 

To effectively control these processes one needs to know the nature of the flows that 
arise. Since the radius of the rotating disk is usually many times the thickness of the li- 
quid layer, one can, for the purposes of mathemetical modelling, replace the disk by an in- 
finite rotating plane. In the present paper we construct stationary and self-similar Kar- 
man-type solutions of the Navier-Stokes equations, which describe the flow of a viscous 
liquid in the layer between a rotating solid plane and the free surface parallel to it. 

i. Statement of the Problem. We consider a rotationally-symmetric flow of a viscous 
incompressible liquid in a layer A t = {(r, 8, z) ~ Ra, Z e (0, Z(t))}, bounded above by its 
free surface and below by a solid wall rotating around the z-axis at a given angular rate 

~(t). 

The field of velocity and pressure in the liquid [V(r, z, t) and p(r, z, t)] satisfies 
the Navier-Stokes equations 

U t "~- UUr - -  r - i v  2 ~ WUz ~ --p-lPr + ~'[Urr -}- ( r - lu ) r  + Uzz], (1.1) 

U't -} uwr  ~ w w  z = - - p - l p z  ~- u -~ r - lu ' r  -~ wzz],  

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
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in the region A t and the adherence boundary conditions 

and also the dynamic 

and kinematic 

u = O , v  = rP-( t ) ,w = 0 fo r  z =- 0, ( 1 . 2 )  

P = P o  q- 2pvu,~,u~ = v ~ - -  0 ( 1 . 3 )  

w = dZ/dt  ( 1 . 4 )  

conditions on the free boundary z = Z(t). Here u, v, w are, respectively, the radial, cir- 
cumferential, and axial components of velocity V; p is the density of the liquid; 9 is the 
kinematic coefficient of viscosity; a subscript indicates partial differentiation with re- 
spect to the corresponding argument. 

Further, we consider solutions of Eqs. (1.1)-(i.4) for which functions u and v are lin- 
ear in the variable r, and for which p and w are independent of r. Let 

u --  r~oF(~,  T), v = r~oG(~, ~), ~ = ~0~(~), ( 1 . 5 )  

where ~ = z/~0/v; ~0 is a characteristic angular rate; z = ~0t. Then Eqs. (i.i) assume 
the form 

for $ ~ (0, D(T)), T > 0 [D(T) = 

F~ @ HF~ -'s F 2 - -  G 2 = F ~ ;  ( 1 . 6 )  

G~ -'r HG~ @ 2FG = G~; ( 1 . 7 )  

2F  q- H~ = 0; ( 1 . 8 )  

H~ + H ~  ---- --Q~ + H~ (1 .9)  

/ ~ o / v Z ] ,  and  t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 2 ) - ( 1 . 4 )  b e c o m e :  

Q = 2H~ !- po/(OVf2o); 

F = 0, G = o)(T), H = 0 fo r  ~ = 0; 

F~ = G~ = 0; 

H =  dD/d'~ fo r  ~ = D ( G .  

The p r o b l e m  i s  c o m p l e t e d  w i t h  t h e  a s s i g n m e n t  o f  t h e  i n i t i a l  d a t a  

F = F~  = G ~  H~ for  $ ~  (0, Do), 

z = 0, D(0) = D O . 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

It is readily seen that problem (1.6)-(i.14) breaks down into two problems, solvable 
in succession. Functions F($, ~), G($, x), H($, T), D(x) are determined by solving the 
closed problem (1.6)-(1.8), (1.11)-(1.14); the pressure Q(~, T) is then recovered after 
this by solving equations (1.9) and (i.i0). 

Solutions of the form (1.5) were first considered by Karman [7]. The initial-boundary 
problem (1.6)-(1.14) was investigated in [i, 8]. Its unique solvability in the small with 
respect to the time was proved in [8] for smooth functions ~(x) upon satisfaction of condi- 
tions of compatibility of the initial data and boundary conditions. In [i] a problem was 
considered with the incompatible initial and boundary conditions ~ = ~0, F~ = G~ = 
H~ = 0 and a formal asymptotic expansion was formulated for small Reynolds numbers (Re = 
D02~0 = ~(0)Z2(0)/v) and small values of T. The stationary problem (1.6)-(1.12) was solved 
numerically in [4-6] for the given value D(x) = D O . The kinematic condition (1.13) was not 
satisfied for all solutions constructed therein, so that its physical interpretation was 
clouded. 

The present paper is devoted to the construction of stationary and self-similar solu- 
tions of the problem (1.6)-(1.13). Let ~n(T) = (i + nx)-lWn for n = -i, 0, i; the problem 
(1.6)-(1.13) then admits solutions of the form 

H(.~, T) = (1 ~- n ~ ) - l / 2 [ h ~ ( ~ )  + n~ , /2 ] ,  
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F(~, ~) = (1 ~? nJ- l / ,~(~, , ) ,  G(.~, z) = (t -I- n~)-:g,~(~,,), 

O,,(~) = (i  + ,2T):,"~d,,, ~, = (i : - - . : ) - ~ / ~ .  

The unknown functions fn(~), gn(~), hn(~) and the number d n satisfy for various n the equa~ 
tions (subscripts n are omitted; a prime denotes differentiation with respect to the vari- 

able ~): 

and boundary conditions 

/ "  = / ' h  §  - g~ - -  hi; 
g "  = g ' h  -~ 2 / g  - -  rig; 

h' = - - 2 [ - -  n/2 

(i.i5) 

(1.i6) 

(i.i7) 

/(0) = h(0) = 0, g(0) = 0~; ( 1 . 1 8 )  

/ ' ( d )  = g ' (d )  = h(d)  = O. ( 1 . i 9 )  

When n = - 1  t h e s e  s o l u t i o n s  d e s c r i b e  a s e l f - s i m i l a r  s p r e a d i n g - o u t  f l o w ;  when n = 0 t h e y  
d e s c r i b e  a s t a t i o n a r y  s o l u t i o n ;  and  f o r  n = 1 t h e y  d e s c r i b e  a s e l f - s i m i l a r  r e g i m e  f o r  a 
t h i c k e n e d  l a y e r  on t h e  r o t a t i n g  p l a n e .  

2.  F l o w  i n  a L a y e r  on a F i x e d  P l a n e .  I f  p l a n e  z = 0 i s  n o t  r o t a t i n g ,  i . e . ,  i f  ~ = O, 
s y s t e m  ( 1 . 1 4 ) - ( 1 . 1 6 )  t h e n  h a s  s o l u t i o n s  s u c h  t h a t  g ---- O, and  f u n c t i o n s  f and  h s a t i s f y  t h e  
e q u a t i o n s  

1" = l'h + /2 _ ~d; ( 2 . 1 )  

h' = - - 2 / - -  n/2. ( 2 . 2 )  

Boundary c o n d i t i o n s  i n  t h i s  case assume t h e  fo rm 

1(0) = h(O) = / ' ( d )  = h(d) =~ O. ( 2 . 3 )  

Let f(~), h(~), d be a solution of problem (2.1)-(2.3). Integrating equation (2.2) 
from 0 to d and taking account of the boundary conditions, we obtain 

4 

/ (.~) d~ = - -  nd/~. ( 2 . 4 )  
0 

I t  f o l l o w s  f r o m  e q u a t i o n s  ( 2 . 1 )  a n d  ( 2 . 2 )  t h a t  

(/ + hV4)"  = ~?/8 -~- 3i2~> n%'8. ( 2 . 5 )  

Integrating this latter inequality from d to ~, and then from 0 to ~, and taking account of 
boundary conditions (2.3), we obtain 

/ q- h2/4 < n~-(~ 2 - -  2d~ ) / lO ,  ( 2 . 6 )  

which, after substitution into Eq. (2.4), yields 

- - 6 n d  ~ - -  n~ ( 2 . 7  ) 

E q u a l i t y  i n  r e l a t i o n s  ( 2 . 5 ) - ( 2 . 7 )  i s  p o s s i b l e  o n l y  i f  f --= 0.  

The following propositions hold: 

i. If co = 0, g ~ 0, n = O, then f --: 0, h ~ 0, i.e., there are no nontrivial Karman- 
type flows on a fixed plane. Otherwise we would have inequality (2.7) as a strict inequal- 
ity, i.e., 0 < 0. 

2. Problem (2.1)-(2.3) has no solutions when n = -i. Otherwise inequality (2.7) would 
be satisfied, i.e., 6d <_ -d 3. 

3. If n = i, the solution of problem (2.1)-(2.3) satisfies the inequalities 

d < Yo; ( 2 : s )  
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--2.3 < I'(0) < 0. ( 2 . 9 )  

Inequality ( 2 . 8 )  follows from inequality (2.7) with n = i. To prove relation (2.9), it 
is necessary to integrate relation (2.5) from 0 to d and then use relations (2.3). This 
gives 

/'(0) < 0. ( 2 . 1 0 )  

This  e s t a b l i s h e s  t h e  r i g h t  s i d e  o f  i n e q u a l i t i e s  ( 2 . 9 ) .  

I t  f o l l o w s  from t h e  e s t i m a t e  ( 2 . 6 )  and e q u a t i o n  ( 2 . 1 )  t h a t  f c a n n o t  a t t a i n  a maximum 
for ~ e [0, d]. Therefore, by virtue of relations (2.3) and (2.10), f(~) decreases monotoni- 
cally, and since h" = -if', function h(~) is convex downwards and, since h(0) = h(d) = 0, it 
is negative for r �9 (0, d). 

Taking into account the properties of the functions f(~), h(~) established above and 
noting the form of Eq. (2.1), it is easy to show that f"(~) > 0 for ~ �9 (0, d), whence f(r 
f(d)r Substituting the latter inequality into Eq. (2.4), we have f(d) > -1/2. Since 
f'(~) < 0, the latter inequality implies that 

/(0 >/(d) >--t/2.  ( 2 . 1 1 )  

Since f(~) < 0, it follows from inequalities (2.11) that 

/2(~) < t/4 for r ~ (0, d). ( 2 . 1 2 )  

S u b s t i t u t i o n  o f  i n e q u a l i t y  ( 2 . 1 2 )  i n t o  r e l a t i o n  ( 2 . 5 )  y i e l d s  ( f  + h 2 / 4 )  ' '  = 3f  2 + 1/8 < 7/8. 
I n t e g r a t i n g  t h i s  l a t t e r  i n e q u a l i t y  f rom 0 t o  d and u s i n g  r e l a t i o n s  ( 2 . 3 ) ,  we can show t h a t  
f ' ( 0 )  > - 7 d / 8 ,  whence,  by v i r t u e  o f  t h e  f a c t  t h a t  d s a t i s f i e s  i n e q u a l i t y  ( 2 . 8 ) ,  we see  t h a t  
i n e q u a l i t y  ( 2 . 9 )  i s  v a l i d .  

3. Self-Similar Regime of Thickened Layer on a Rotating Plane. Numerical Solution. 
Let F~ (x, y, d) = (f'(d), g'(d), h(d)), where f(~), g(~), h(~) is a solution of the Cauchy 
problem 

/(0) = h(0) = 0, g(0) = ~, l'(0) = x, g'(0) = y ( 3 . 1 )  

f o r  t h e  s y s t e m  o f  e q u a t i o n s  ( 1 . 1 5 ) - ( 1 . 1 7 )  w i t h  n = 1. Then t he  s o l u t i o n  o f  t h e  bounda ry  
v a l u e  p rob lem ( 1 . 1 5 ) - ( 1 . 1 9 )  i s  e q u i v a l e n t  t o  t h e  s o l u t i o n  o f  t h e  sy s t em o f  t h r e e  e q u a t i o n s  

F~ (x, ~, d) = 0 ( 3 . 2 )  

w i t h  t h r e e  unknowns (x ,  y ,  d) = X. 

I t  was shown above  t h a t  when ~ = 0 t h e  s o l u t i o n  o f  s y s t e m  ( 3 . 2 )  w i t h  y = 0 must  be 
s o u g h t  in  t h e  r e g i o n  x e ( - 2 . 3 ;  0 ) ,  d e (0 ;  2 . 5 ) .  Th i s  s o l u t i o n  was o b t a i n e d  as p a r t  o f  
he r  c o u r s e  work by s t u d e n t  S. B. Barabanova  o f  N o v o s i b r i s k  S t a t e  U n i v e r s i t y  ( u s i n g  a method o f  ad-  
j u s t m e n t  w i t h  r e s p e c t  t o  p a r a m e t e r s  x and d ) .  I t  t u r n e d  ou t  t h a t  x = x ~ ~ - 1 . 4 0 0 6 ,  d = d o 
1.3231. 

Graphs of functions f0(~) and a~ = h~ + ~/2 are shown in Figs. 1 and 2 (curves i). 
Function a(~) is proportional to the axial flow rate; f(~) is proportional to the radial 
flow rate. The solution constructed describes the flow in a thickening layer on a fixed 
plane stipulated by liquid inflow from infinity. When m > 0, solutions of Eq. (3.2) are 
sought using the following method of continuation with respect to the parameter ~. Assume 
that a solution Xj_ i of Eq. (3.2) is known for~=~j-l; then the solution for m = mj = mj-1 + 
A~j may be found with the aid of an iterational process (modified Newton method): 

X~ = Xj_ I ~ A~j (0FJOX) -~ 0F~/00); (3.3) 

Xh+l k X h = X j - - ( 0 F ~ / ~ X ) - ~ . F ~ (  j); ( 3 . 4 )  

X j = l i m X ~ ,  (3 5) 

where (0FjOX) -I are matrices inverse to (0FJOX), calculated for X = Xj_l, ~ = ~j-l and for 
X = Xj ~ m =mj in relations (3.3) and (3.4), respectively. 
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In implementing this method numerically we obtained the vector-valued function F~(X) 
by replacing equations (1.15)-(1.17) by a difference scheme of second order accuracy with 
step Ar = 0.001. Partial derivatives of F~ (apart from dF~/Od ) in Eqs. (3.3) and (3.4) 
were replaced by difference analogs of the form 

OF~ F~ (x ~ Ax) -- F~ (x-- Ax) 
Ox 2hx 

and similarly (Ax = Ay = ~m = i0-4). We put 8F~/Sd = (f"(d), g"(d), h'(d)). Condition (3.5) 
h k~l was replaced by X i = Xj A if I Xj_Xj I<I0 -s. Values of A~j were chosen as follows: 

{ 0 . 0 t  f o r  ~5 ~ [0, 2) U [3, 5), 
0,001 for  ~ ~ [2, 3), 

A~j = 0.I for ~)~ [5, I0), 

t for ~ j ~ [ J O ,  100). 

R e s u l t s  o f  t h e  c a l c u l a t i o n s  a r e  shown i n  F i g s .  1 - 4 .  I n  F i g .  4 t h e  c o n t i n u o u s  c u r v e  i s  
t h e  g r a p h  o f  t h e  f u n c t i o n  d ( m ) .  I t  t u r n s  o u t  t h a t  d(w)  i n c r e a s e s  f o r  w < ~0 ~ 1 . 5 3  and  d e -  
c r e a s e s  f o r  m > m 0  a r e s u l t  w h i c h  i s  c o n n e c t e d  w i t h  a c h a n g e  i n  t h e  n a t u r e  o f  t h e  f l o w .  
For m < ~0 ~ 1.06 the axial component of the velocity is everywhere positive, the radial 
component is everywhere negative, and the circumferential velocity varies in sign. Close 
to the free surface the liquid rotates in a direction counter to the direction of rotation 
of the solid surface. The absolute value ml of the angular rate of the liquid on the free 
surface is close to 2m for small values of m. As w grows, the ratio ml/m decreases, w I in- 
creases. Shown in Figs. i-3 are the graphs of f(~), a (C) . ,  and g(~), respectively, for w = 
0.2 (curves 2). 

The at-first-glance paradoxical nature of these solutions may be explained by the fact 
that the reason for the motion of the liquid here, along with the rotation of the disk, is 
the flow at infinity. For small ~ centrifugal forces on the rotating disk are insufficient 
for the flow to spread. 

When ~ > ~o a zone appears close to the solid surface where a(~) < 0, f(~) < 0, i.e., 
the liquid is driven back by centrifugal forces. In a neighborhood of the free boundary the 
liquid, as in the case of small ~, moves towards the center and upwards and rotates in a 
direction counter to the direction of rotation of the disk; ~1 increases with an increase in 
m, ~i/~ decreases. In Figs. 1-3 curves 3 are the graphs of functions f(~), a(~), and g(~) 
for m = 14.5. "Counter-rotation" of the liquid close to the free surface is, apparently, a 
consequence of the self-similarity of the solutions considered, requiring for its realiza- 
tion special conditions at infinity. 

Solutions of problem (1.15)-(1.19) were constructed by the method described above for 
~ i00. If w > i00, this method does not insure the accuracy needed since the values of 

the derivatives of the unknown functions become too large. For large values of m it is con- 
venient to make calculations in new variables, which we introduce below. 

4. Asymptotics of Solutions for Large Angular Rates. Stationary Solutions. The 
change of variables 
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= dq, ] = ~d -2, g = ~2d -~, h = %d-1; 

( z _ - - d  e 
(4.1) 

(4.2) 
brings problem (1.15)-(1.19) to the form 

~,, ~ %~, @ ~_~2_ ~,~,, = %~, @ 2~--~, (4.3) 
t %' = --2~ -- ~/2; 

T(0) = %(0) = 0 , , ( 0 )  = ~0 = od2, ~'(1) = , ' ( I )  = %(1) = 0. ( 4 . 4 )  

Parameter ~0 below is considered as given; a is an unknown. 

It is obvious that an arbitrary solution of problem (4.3) and (4.4) such that ~ > 0 
after the change of variables (4.1) and (4.2) yields the solution of problem (1.15)-(1.19) 
with n = I, and, conversely, a change of variables, inverse to relations (4.1) and (4.2), 
takes an arbitrary solution of problem (1.15)-(1.19) into a solution of problem (4.3) and 
(4.4) with ~ > 0. 

Problem (4.3) and (4.4) was solved numerically by a method of continuation with respect 
to parameter ~0 similar to the method described in Sec. 3. It was assumed that F%(X) = 

(~'(I), ~'(I), %(I)), where X = (~, ~, ~), ~(~), ~(N), %(~) is a solution of the Cauchy problem ~'(0)= 

~'0,@'(0) = @'o, ~(0) = @o f o r  e q u a t i o n  ( 4 . 3 ) ,  X 0 - - (x ( t00 )d3 ( t00 ) ,  y(t00)d3(100), d2(100)). 

The  c a l c u l a t i o n s  made showed  t h a t  ~ > 0 f o r  ~0 < $ 0 ,  = 5 3 . 7 3 ,  ~ ( ~ 0 , )  = 0.  F u n c t i o n s  
r , ~ , ,  X, a r e  a s o l u t i o n  o f  e q u a t i o n s  ( 4 . 3 )  and  ( 4 . 4 )  f o r  ~0 = ~ 0 , .  R e t u r n i n g  t o  t h e  v a r -  
i a b l e s  f, g, h, d, ~, we can conclude that d2o + ~0,, f(E)/o § ~,(~0--~)/}0,, g(~)/~ § 

It is not hard to see that if ~ = 0 the system (4.3) coincides with the system (i.15)- 
(1.17) for n = 0. Therefore the solution ~* (~), ~,(E), X,(E), 0 for problem (4.3) and (4.4) 
that we have constructed is at the same time a solution of problem (1.15)-(1.19) with n = 
0, d = i, i.e., a stationary solution of problem (1.6)-(1.13). 

It is easily verified that when n = 0 the change of variables (4.1) and (4.2) trans- 
forms Eqs. (1.15)-(1.17) and the homogeneous boundary conditions into themselves. The 
right side of the nonhomogeneous boundary condition transforms into ~d 2. Therefore, for an 
arbitrary value of ~ and n = 0 problem (1.15)-(1.19) has the solution 

f~ (~) = o ~ ,  (d o (o) ~)/*0,, ho (~) = ol/2%, (d 0 (o) ~ ) / ~ ,  

g~ E) = ~** (~0 (@ ~)/r (do (o) = (%, /o )v0 .  

G r a p h s  o f  t h e  f u n c t i o n s  f m ( ~ ) ,  %($) ,  g o ( 5 )  f o r  ~ = 2 3 . 8 8  a p p e a r  a s  c u r v e s  4 i n  F i g s .  1 - 3 ,  
respectively. The graph of function d0(o) is shown in Figs. 4 and 5 by the dashed curve. 

Remark 4.1. If we extend functions f(~) and g(E) symmetrically with respect to the line E = d 
and extend h(E) anti-symmetrically, we obtain functions satisfying for E e (0, 2d) the equa- 
tions (1.15)-(1.17), and satisfying for ~ = 0 and ~ = 2d the boundary conditions (1.18) on 
the solid wall, i.e., rotating in one direction and with identical angular rates. 
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Remark 4.2. For all the stationary solutions constructed we have Re = ~Z2/v = ~0, ~ 53.73. 

5. Spreading of a Layer on the Rotating Plane. Problem (4.3) and (4.4) turns out to 
be solvable even when ~D > ~0,; however, a < 0 when ~ > ~0,. Let ~(N) , 9(~), X(D), a < 0 
be a solution of problem (4.3) and (4.4). If we put d 2 = -~ and make the change of varia- 
bles (4.1), the resulting functions f(r g(~), h(~) and number d will be a solution of pro- 
blem (1.15)-(1.19) with n = -i, i.e., they will describe a self-similar regime for spreading 
of the layer on the rotating plane. 

We solved problem (4.3), (4.4) numerically for ~0 > ~0,, using the same method as for 
~0 < @0,. In these calculations the value of a varied from 0 to -i, ~ from ~ to 50, and d 
from 0 to i. For small values of ~ the solution was carried out in the variables E, f, g, 
h, d by the method described in Sec. 3. Solutions were obtained for ~ > ~ = 30.68. It 
turned out to be the case that Id'(~)l + ~ as ~ § ~,, and it was not possible to continue 
the solution for ~ < m,. The last equation furnished the basis for our assumption that the 
function d(m) is not unique. Succeeding calculations confirmed this assumption. These were 
made by the method described in Sec. 3; however, in problem (1.15)-(1.19) d was considered 
to be given and ~ was considered as an unknown. We used the method of continuation with 
respect to parameter d. We assumed that Ad = 0.i, d o = d(40), x~ y0 = y(40), m0 = 40. 
Quantities appearing in the right-hand members were calculated earlier by the method of con- 
tinuation with respect to the parameter m. 

The graph of the function d(~) appears as the dashed curve in Fig. 5. Solutions cor- 
responding to the lower part of this graph describe flows such that close to the solid plane 
the liquid rotates in the same direction as the disk and spreads out along it. Close to the 
free surface the liquid flows toward the center and rotates in a direction counter to the 
direction of rotation of the disk. As m increases, ~l and ml/m increase. Graphs of the 
functions f(~), g(E) and a(~) for ~ = 37.94 appear as curves 5 in Figs. 1-3. For solutions 
corresponding to the upper part of the graph in Fig. 5, ~i and ~z/~ decrease as ~ increases. 
For large m these solutions are of the nature of a boundary layer; outside of a narrow zone 
close to the rotating plane they are close to 

1(~) = - - l ,  g(~) = 0, h(~) = 5(~ --  d) /2 .  ( 5 . 1 )  

F u n c t i o n s  f ( ~ ) ,  g (~)  and h ( r  d e f i n e d  by f o r m u l a s  ( 5 . 1 ) ,  s a t i s f y  e q u a t i o n s  ( 1 . 1 5 ) - ( 1 . 1 7 )  
and t h e  c o n d i t i o n s  on t h e  f r e e  b o u n d a r y  ~ = d f o r  an a r b i t r a r y  v a l u e  o f  d,  which  i n c r e a s e s  
a l m o s t  l i n e a r l y  w i t h  i n c r e a s i n g  m. C a l c u l a t i o n s  were c a r r i e d  ou t  up t o  ~ = 50. 

The s o l u t i o n s  c o n s t r u c t e d  d e s c r i b e  f l o w s  f o r  which  t h e  t h i c k n e s s  D of  t h e  l a y e r : v a r i e s  
in  a c c o r d a n c e  w i t h  t h e  law D = dr -- ~. A f t e r  a f i n i t e  t ime  D(T) v a n i s h e s ,  i . e . ,  t h e  s u r f a c e  
" d r i e s  up" .  These  s o l u t i o n s ,  a p p a r e n t l y ,  do n o t  e x h a u s t  t h e  whole  c l a s s  o f  s o l u t i o n s  o f  
p rob lem ( 1 . 1 5 ) - ( 1 . 1 9 ) .  For  example ,  s o l u t i o n s  can e x i s t  which have  f o r  l a r g e  v a l u e s  o f  
the asymptotics, not of formulas (5.1), but f(~) = 0, g(~) = 0, h(~) = (~ -d)/2. 

We remark that from the solutions constructed in Secs. 3-5 we can obtain, using a dila- 
tation transformation of the variables F, G, H, ~, ~, self-similar solutions of problem 
(1.5)-(1.13) of the general form 

F =- (a + b~c)-l/(~), G = (a + b'~)-lg(~),  H = (a -}- b~c)-X/2a(~), 

~. = ~/ ],/ a q- b'~. 
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RAREFIED GAS MOTION IN A SHORT PLANAR CHANNEL OVER THE ENTIRE 

KNUDSEN NUMBER RANGE 

V. D. Akin'shin, A. M. Makarov, V. D. Seleznev, 
and F. M. Sharipov 

UDC 533.6.011.8 

It was demonstrated in [i] that flow of a rarefied gas in a finite channel has been 
considered only over a narrow Knudsen number range or in coarse approximations valid only 
for sufficiently long channels. In that study the problem was solved for a wide range, but 
in the approximation that molecules entering the channel through its faces have an absolute- 
ly Maxwellian distribution function, which also limits application of its results to finite, 
although sufficiently long channels. In connection with this there is a need for a precise 
solution of the given problem over the entire range of Knudsen numbers with consideration 
of flow formation in the region of the vessel near the input. 

i. We will consider a planar channel of length ~, height 2a, infinite in the z-direc- 
tion, connecting two semi-infinite vessels of one and the same gas (Fig. i). Within the 
vessels at a sufficient distance from the channel the gas is maintained under equilibrium 
conditions at pressures Pl and P2 and identical temperatures T. Under the action of the 
pressure head the gas moves in the x-direction. 

We introduce the scale factors: a, nl, ~i/2 = (2RT)I/2, ni~-3/2, ~i = nlmvll/2 for the 
length, density n, velocities e and u, distribution function f and viscosity coefficient N. 
Here R is the ideal gas constant, m is the mass of a molecule, v = (SRT/~) I/2 is the thermal 
velocity of a molecule, i I is the molecular free path length in the first vessel. All fur- 
ther expressions will be written using these scaling factors. 

We assume that the relative pressure head is much less than unity (IP2 - Pll/Pl << i) 
and that all gas molecules are reflected from the walls of the channel and vessels diffusely. 
For the distribution function equation we use the BGK model of the Boltzmann equation [2] 

eO//Or = 6(/0 - - / ) ,  
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